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because of the creation, in the common polytype, of 
edge dislocations of Burger's vector, (a/3 +2b/3) or 
(2a/3 + b/3) or an integral multiple of these, at regular 
intervals. The formation of a lower polytype is gov- 
erned by potential energy considerations while that 
of the long-period structure (for which the difference 
of energy is vanishingly small) is determined by the vi- 
bration entropy. Since it occurs more commonly than 
all other polytypes, the type 4H is believed to possess 
the minimum free energy. The higher polytypes of cad- 
mium iodide are supposed to be formed by the intro- 
duction of stacking faults resulting from partial dis- 
locations. The heating of a high polytype will help the 
partial dislocations to diffuse out, as proposed above, 
the polytype thus reverting to the parent 4H structure. 
Such a process will be favoured thermodynamically, 
since the system will always tend to adopt a configura- 
tion of minimum free energy. Thus the observed trans- 
formation of the type 46H (Fig. 2) to 4H (Fig. 4) is 
explained. Such a transformation cannot be understood 
on the screw dislocation theory of polytypism (Frank, 
1951) according to which very stable polytypes should 
be formed by the mechanism of spiral growth. 

Studies carried out on other cadmium iodide crys- 
tals have revealed that the process of transformation 
from a higher to a lower polytype is a gradual one. For 
instance, on heating a polytype 32H, the intensity of 
its diffraction spots changed, showing that the poly- 
type remained of the type 32H without any change in 
its unit-cell dimensions, but the sequence of layers 

along the e dimension changed. Also, the change in 
intensity was such that the intense spots occurred at 
the positions of spots of the common type 4H. On 
heating again for the same time and at the same tem- 
perature, the intensity sequence changed further, but 
the spacing between the diffraction spots still remained 
the same, showing that the polytype was still 32H. The 
intensity sequence now resembled still more that of the 
type 4H. On further heating, the polytype ultimately 
changed to the common polytype 4H (photographs 
not reproduced). It follows that not only do the partial 
dislocation~ diffuse out gradually from the crystal, but 
they do so with regularity. 

The above observations clearly bring out the im- 
portant role played by stacking faults in the formation 
of polytypes. The detailed experimental results will be 
presented elsewhere in due course. 

Appreciation is expressed to Mr V. K. Agrawal and 
Dr G. K. Chadha for many valuable discussions. This 
work was supported financially by the University 
Grants Commission, New Delhi, India. 
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General equations (within the limitations of the geometrical theory) are given describing the intensity 
distributions of Bragg reflexions of small distorted crystals with stacking faults. In these equations func- 
tions occur representing the stacking-fault densities, the form of the average coherently scattering region 
and the distribution of the relative translations of the unit cells due to the distortions apart from a 
lattice vector. The equations describing the intensity distribution of a Debye--Scherrer line can be in- 
verted and give then the stacking-fault density, the distribution of the relative translations of the unit 
cells, and the form function of the average coherently scattering region in the direction perpendicular 
to the reflecting planes. A general method is given for separating the three effects: distortions, stacking 
faults and the size of the average coherently scattering region. 

Introduction 

In the analysis of the structure of distorted crystalline 
materials by X-ray diffraction we distinguish three dif- 
ferent types of effects, due to crystallite size, random 
translations of the unit cells from their 'ideal' posi- 
tions, and stacking faults. 

The work of Warren & Avergach (1952) for the case 
in which crystallite size effects occur in combination 
with the random shifts of unit cells is very well known. 
The results of Warren & Averbach hold when the 
distortions of the material are not too large. For a 
correct interpretation of the diffraction intensity dis- 
tributions in the case of larger distortions it is necessary 
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to introduce the repartition function ~(x)  for the ma- 
terial, as described in a previous paper (La Fleur, 1969) 
for the case of crystals without stacking faults. 

The repartition function ~(x)  is defined as the prob- 
ability density of finding a unit cell at a distance x 
from all other unit cells in the material. The use of the 
function ~(x)  is relevant only in the case without 
stacking faults, in which all unit cells can be considered 
to be identical. It is necessary therefore to extend the 
calculations of the previous paper (La Fleur, 1969) in 
order to include also the stacking-fault effect. This is 
the subject of the present paper. The problem of sep- 
arating the three effects will be discussed also. 

To that end we need a general description of the 
stacking-fault effect. [Descriptions in terms of differ- 
ence equations are given, for a number of particular 
types of structure, e.g. by Warren (1968)]. A stack- 
ing fault is a uniform translation of the atoms at one 
side of a plane with respect to the atoms at the other 
side of that plane. The plane is called the glide plane 
of the stacking fault and the translation is parallel to 
it. The unit cells of the crystal that are intersected by 
such a glide plane have a structure factor different from 
that of the other unit cells in the crystal. We assume 
that various types of stacking fault occur in the mater- 
ial and denote a certain type of stacking fault by the 
subscript p. The structure factor of a normal unit cell 
is indicated by fo and that of the unit cells intersected 
by the glide plane of a stacking fault of type p is in- 
dicated by f~o. 

The perpendicular to the glide plane of a stacking 
fault of type p is denoted by x; (Ix'ol = 1). One of the 
two vectors x~ and -x~, is chosen as the characteristic 
direction of the glide plane and denoted by x~. The 
translation of the atoms by the stacking fault of type 
p is denoted by Au~. It is defined in such a way, that 
it fulfils the following condition. Consider the vector 
x pointing from a unit cell to another one and suppose 
that x is intersected by a glide plane of a stacking fault 
of type p. This distance vector x is given by 

x = a + A u ~  if (x .x~)  > 0 ,  
and x = a - A u ~  if (x .x~)  < 0 .  

Here a is the distance vector between the same two 
unit cells, but in the absence of the stacking fault con- 
sidered. By definition dUo=0. In the same way the 
position of a unit cell intersected by the glide plane 
of a stacking fault is defined: b+½Au~. Here b is the 
position vector of the same unit cell if the stacking 
fault would be absent. In the following we call a unit 
cell that is intersected by a stacking fault of type p a 
unit cell of type p. (Each type of stacking fault is as- 
sumed to 'produce' only one new type of unit cell.) 

It is assumed in the following, that, in addition to 
the translations due to the stacking faults, the unit cells 
are also translated with respect to each other owing to 
random distortions. Rotations and distortions of the 
individual unit cells will be neglected, except, of course, 
the distortion due to the stacking faults. 

The characterization of the random distortions must 
be adapted to the case in which stacking faults are 
present. Instead of the repartition function ~(x)  the 
quantity N~0,(x)~:o,(x)dx is introduced. This is the 
number of unit cells of type p '  that is found at a dis- 
tance between x and x + dx from all unit cells of type p. 
Let us introduce also a lattice with lattice points Xm 
and primitive translation basis vectors e~ ( i= 1, 2, 3). 
Then the vector x is given by X=Xm+Ax,  where Xm 
is chosen so that 

(e~.Ax)<½1e~l 2 ( i=1,  2, 3).  (1) 

In the above definition the function N~o,(x) is a slowly 
varying function of x, except for x = 0 .  It is chosen 
such that for all Xm: 

I N1o 1o' (x)~ol9 '(x)dx ~ N~o~o'(Xm) I~2)'(x)dx-~N1o~9,(Xm). 

The limits of integration are determined by 

I{e~. ( x -  Xm)}[ < ½levi z . (2) 

Thus N~p,(Xm) is equal to the number of unit cells of 
type p '  that can be found at a distance between Xm and 
Xm+Zfx' from all unit cells of type p, where /Ix' in- 
dicates the boundaries of the cell defined by relation- 
ship (1). At x = 0  the function N~o~0,(x) possesses a dis- 
continuity, since by definition 

N ~ , ( 0 ) = 0  if p~p ' ,  (3a) 
and 

N~o~0,(x) ~ 0 if p ~ p '  and x ~ 0 (3b) 

when the material contains stacking faults. 
In the following, we will neglect the effects due to 

the intersection of two glide planes of stacking faults 
of different type. 

Derivation of the equations 

The diffraction intensity distribution of a distorted 
crystalline material containing stacking faults is cal- 
culated as follows, within the limitations of the geo- 
metric theory. The structure factor of the material is 

F =  ~ ~ f~0 exp {2zcis. (un+Aun+½Au~ 
p nmno 

+ ~ a~,nzlur)}, (4) 
p 

in which the symbols represent the following: 

s: reciprocal space coordinate. 
n: set of three integers nx, n2, n3, numbering the unit 

cells. 
Un: position of the nth unit cell in an ideal, undis- 

torted crystal with respect to a certain origin. 
Aun: translation of the nth unit cell due to the random 

distortions. 
zlu~: translation of a unit cell when a glide plane of a 

stacking fault of type p occurs between the ori- 
gin and the nth unit cell. 



P. L. LA F L E U R  433 

a~, n" number of glide planes of type p between the ori- 
gin and the nth unit cell. 

n~" set of indexes n for the unit cells of type p. 

The summation in equation (4) is taken over all p and 
all n~. The corresponding intensity distribution I(s) is 

when 

I(s)=F(s)F(s)*= 

Z Z .~];,exp [2zds. (Un-Un'+/IUn-/IUn' 
pp" n' = n'p, 

n=np 

+½(/Iu~o-/Iu~')+ ~ (a~,n-a~,n')/Iu~}]. (5) when 
p 

The sum of the translations Un, -Un',/IUn, etc., occur- 
ring in the exponential of equation (5) is replaced by 
X=Xm + Ax, where x, Xm and Ax are defined as in the when 
introduction. In the same time P~p'(Xm; /Ix/c) is put 
for the number of unit cells of type p '  that are at a dis- 
tance Xm + Ax~ from all unit cells of type p in the mate- 
rial. Thus we can replace equation (5) by 

I(s)= E Lf;, E e,p '(Xm; /IXk) 
pp' rn,k 

× exp {2r~is. (Xra +Axe)) .  (6) 

In a corresponding integral form this equation becomes 

i(s)= Z Lf;, Z , ;/Ix) 
pp" m 

× exp (2zcis. (Xm +Ax)}d(Ax). (7) 

In this equation ~ , ( X m ;  Ax)d(Ax) is the number of 
unit cells of type p and p' that is found at a distance 
between Xm + Ax and Xm + / ix  + d(Ax) from each other. 
By the definition of Ax we may put 

• ~'(Xm; Ax) = 0, and 

I(e~./ix)l-< le~lZ; ( i=1,  2 or 3). 
when 

(8) 
and Comparing the definitions of ~ol0'(Xm;AX) 

N ~ , ( x ) ~ p , ( x ) ,  we observe that 

~1olo'(Xm ;/Ix)"=Npp'(x)"~YJ~pp'(X) • (9) 
m 

Equation (9) can be substituted into equation (7) to give 

: (x)ex. (27ris. x) dx .  (10) 
pp" 

Apart from the translation ½Aup due to a stacking 
fault the relative translations of the unit cells due to 
distortions that are first neighbours are very small. 
Therefore we can equate ~ p , ( x )  in good approxima- 
tion to 

~ p , ( x )  = ~oo(X + ½Au~ + ½Au~,) 
when 

(x. x~) ~-0 
(x .  x~0,) ¢: 0 .  

~ , ( x )  =~oo(X) 

(x. x~)=(x, x~,)=0. (11) 

The + sign for Aup applies, when (x.  x~)< 0, and the 
- sign applies when (x.  x~)> 0. The same is true for 
the expressions in p'. 

We substitute this set of equations in equation (10). 
For the ease of writing we introduce at the same time 
the function G~, (x ;  s). This function is defined as 

Gp~,(x; s) = exp {zris. ( __ Au~ + Au~,)) 

(x. x~) ¢0 
(x. xp,)¢0 

G~o~,(x; s) = 1 

(x. x~)=(x, xv,)=0 (12) 

with the same sign convention as (11). 
Since Nrlo,(x) varies slowly with x(x ¢ 0), then equa- 

tion (10) becomes 

/(s)= ~,f ff;, s)Nlo~,(X)~oo(X) 
pp" 

× exp (2zcis. x)dx.  (13) 

This equation can be treated in the same way as equa- 
tion (7) in the previous paper (La Fleur, 1969). At first 
~oo(x) is expressed as 

~oo(X)= ~ [ C ' ( x m ) ~ O ' ( X m ; / i x ) + v - l ( 1 -  C'(x))] g~., (14) 
m 

where C'(x) is chosen such that 

¢(Xm; k(el, e2, e3))=0 (15) 

I ~0'(Xm, 1. Ax) d(Ax) = 

I(ei. Ax)l_< ½1etl2 (16) 

In these equations v is the volume of a unit cell of 
the lattice. Let us introduce also the functions ~0(x;/Ix) 
and C(x) varying slowly with x. For x = Xm these func- 
tions have the values 

C ( x r n ) ~ - C ' ( x m )  (17) 
~(Xm,/ix)=~0'(Xm;/Ix).  (18) 

By means of equations (14), (17) and (18), equation (13) 
is written 

l ( s ) - -  la(s) + lb(s) . (19) 

Where 

pp" 

x exp (2z~is. x)dx (20) 

A C 26A - 4 
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with 

.%~,,(x; s)= C(x)G~,v,(x; s)Nvv,(x) 

x Ax) exp (2his. Ax)d(dx). (21) 

Iris) is the remaining term, corresponding to the sec- 
ond term v- l{1-  C(x){ in equation (14) for ~oo(X). 

-The first term I,(s) in equation (19) becomes then 

Io(,) = fZ ,  (x,, s) 
pp, m 

pp" 

x exp (2his. x)dx. I : :  m ~ 6 (x -  x , )  

S2?-<x; x exp (2his. x)dx= ~ fpf; ,  s) 
p~9' 

x exp (this.  x)dx, ~ 3 ( s - s l )=  

I += t~ ~ f p f j ,  _~ Avv,(x; st) exp {2nix. (s-s t )}dx.  
PP 

(22) 

Here • means convolution integral of the quantities 
at both sides of the sign. Furthermore st is the lth point 
of the reciprocal lattice (l=ll, 12, 13), chosen such that 

(Xm. S O is an integer. (23) 

In equation (22) the terms in the summation over l are 
identified with the intensity distributions of the singular 
spots of a diffraction pattern It(s-st), where 

I(s)= ~ It(s-st). (24) 
l 

The result of this identification is: 

I::A~'(  x / (s--st)= ~ fpf;, ;st) 
pp" 

x exp (2nix. ( s -  st)}dx. (25) 

The identification makes sense when the diffraction 
pattern consists of (broadened) spots around the points 
st, that can be separated from each other, so I t(s-st)  
must decrease sufficiently rapidly with Is-st]. This im- 
plies that Avv,(x; st) varies sufficiently slowly with x. 
However, Aw,(x; st) contains the function Gvv,(x; st). 
This is a step function of x unless p =p '  =0. Therefore 
A~v,(x; st) only can be a slowly varying function of x, 
when Nvv,(x) (p, p ' #  0) is sufficiently small compared 
with Noo(X); in addition ~0(x; Ax) and C(x) must vary 
slowly with x. Thus the stacking-fault density is rela- 
tively small when the diffraction pattern consists of 
discrete (broadened) spots around st. 

The second term of equation (19): I~(s) can be shown 
to give a small angle effect, described by the fi function 
fi(s), if it is combined with the term for l=  (0, 0, 0) in 
the summation over l in equation (22). 

In the case of a crystal without stacking faults equa- 
tion (25) reduces to equation (31) of the previous paper. 
In that paper C(x) was called the form function of the 
average coherently scattering region. It is seen, that 
the meaning of C(x) in the case of a crystal with stack- 
ing faults is the same as that in the case of a crystal 
without stackin~ faults. 

The function C(x) decreases when the relative trans- 
lations (assumed to be at random) of the unit cells due 
to the distortions increase. Therefore the size of the 
average coherently scattering region decreases by in- 
creasing distortions. The stacking faults also 'produce' 
relative translations of the unit cells and consequently 
the size of the average coherently scattering region 
decreases when the stacking-fault density increases. 

We have to realize that C(x), in the case of large 
distortions and in the case of relatively large stacking- 
fault densities, is only a characteristic of ~oo(X). Fur- 
thermore the function C(x) depends in these cases on 
the choice of the primitive translation basis vectors of 
the lattice. 

The intensity distribution of a Debye-Scherrer line 
can be derived from equation (25) in the same way as 
it is derived for the case where there are no stacking 
faults. 

I+_:G~v'(t; h(s0) = ~ f~f;, sz)Nvv'(t)C(t) 
pp" 

S:3<'; x exp (2nisot)dt L) exp (2nislL)dL. (26) 

In this formula So is equal to the projection of the 
reciprocal lattice coordinate s - sz  on the direction of st. 
The parameter t is the modulus of a vector perpen- 
dicular to the reflecting planes; the modulus of sz is 
denoted by st. The symbols G2~2y(t; sO, N2o2o'(t) and 
C(t) are used for Gv~,(x; st), N~0v,(x) and C(x) in the 
direction perpendicular to the reflecting planes, re- 
spectively. The parameter L is the projection of Ax on 
that direction. When ~0(x; L) is the projection of 
9(x; Ax) on the same direction perpendicular to the 
reflecting planes, we can define ~0(t; L) as being 9(x; L) 
in that direction. 

If the diffraction lines are discrete, and for L>½d 
(where d is interplanar spacing), we can put ~0(t; L)=  0. 
We have, however, to analyse the significance of C(t) 
and of ~0(t; L) when this is done. This is done by sum- 
ruing the intensity distributions of all orders of reflexion 
for one crystallographic direction. 

I(s)= ~ h(So)=It(s) • ~ 6(s-st). (27) 

Here the term analogous to Ib(s) is not included. The 
parameter s is used for Isl in the direction of st. When 
equation (26) is substituted into equation (27) we get 
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I ~ =  

~t J (s -s t )  * ~ N~,,(t)C(t)G,,,(t; st) 
pp, -- oo 

x exp (2rcisot)dt L) exp (2rcistL)dL 

= , ( t- tn)N~,(t)C(t)G~,(t;  st) 
pp" 

x exp (2rcisot)dt _ ~0(t; L) exp (2rciSlL)dL (28) 

where tn=nd and n is an integer. If we include the 
term analogous to Ib(s), we may write for equation (28) 

I(s)= ~Lf;, N,,'(t)G2o,'(t; s) 
pp" - - 0 o  

x ~oo(t) exp (2rcist)dt. (29) 

The function ~oo(t) is a repartition function 

~oo(t)= ~ C(tn)~O(tn; t - t n )+d- l {1 -C( t ) } .  (30) 
n 

From equation (30), ~oo(t) can be written as the sum 
of the projections ~O(tn; t - tn)  of ~0(X; Ax) times C(tn) 
plus the term d- l{1-  C(t)}. The functions q)(tn; t - tn)  
do not fulfil the condition ~O(tn; t - tn)=O for It-tnl >_ 
½d. However, it can be shown, that we can reformulate 
~oo(t), without changing the result for the intensity 
distribution In(so), as 

~oo(t)= ~, C"(tn)~O"(tn; t - tn )+d- l {1-C"( t ) }  . (31) 
n 

With 

and 

@"(tn;t-tn)=O when t - tn>½d (32) 

f 
tn+½d 

~o"(tn; t - tn)dt= 1. (33) 
tn-- ½d 

When we replace in equation (26) ~0(t; L) and C(t) with 
9"(t; L) and C"(t), the result for In(so) remains un- 
changed. The function ~o"(tn; t - tn)  is approximately 
equal to the projection of ~0(t; Ax) in the direction per- 
pendicular to the reflecting planes if the reflecting 
planes are spanned up by two of the three primitive 
translation vectors, or when ~0(x; Ax) is a very sharp 
function of Ax. The unprimed quantities cannot be 
derived uniquely from the primed ones, so the primed 
quantities can only be determined from a powder dia- 
gram unless a model of the distortions is assumed. (For 
ease of writing, the primes are omitted in the follow- 
ing.) 

Inversion of the equations 

For the analysis of the structure of distorted crystalline 
materials it is of interest to invert equation (26). Fur- 
thermore the effects of distortion, size and stacking 
faults have to be separated. Below, a method is given 

for the separation of the stacking-fault effect from 
both the size and the distortion effects. When this 
separation is carried out, one can proceed by means 
of the known methods for the separation of the size 
effect from the distortion effect. (Warren & Averbach, 
1952; La Fleur & Koopmans, 1968.) We confine our- 
selves to the powder diagram. 

Let us put 

I~iq)(t; L) exp (2xistL)dL=a(t; st) (34) 

The Fourier transform of h(s0): A(t; st) is equal to: 

A(t; st)= ~,fpf~, C(t)Npp,(t)Gpp,(t; st)a(t; st). (35) 
pp" 

The stacking-fault density is necessarily relatively small 
if the diffraction lines are discrete. Therefore N~,(t)  
(p, p' #0 ;  t>  0) can be neglected in comparison with 
No~(t) and N~o(t). Thus, we have 

N=Noo(t)+ ~ No~(t)=Noo(-t)+ ~ No~(- t) .  (36) 
p # o  p # o  

It follows from the definition of No~(t) and N~oo(t), 
that: 

No~(t)=N~o(-t) (37) 

and, combining equations (36) and (37), we find: 

Nop( t ) = Nloo( t ) . (38) 

By the definition of G~,(t; st) we may write 

G~,(t; st)=G~,~(t; s o . (39) 

Equations (39) and (37) are substituted into equation 
(35); N~,(t)  (p,p'#O) is neglected. The result is 

A(t; st)=fof oNoo(t)C(t)a(t; st) 
+ ~ {2Refof;}Gop(t; sONop(t)C(t)a(t; st). (40) 

p # o  

We will write down the imaginary part and the real 
part of equation (40) separately. To that end we denote 
the real part of A(t; sO, a(t; st) and Gop(t; st) with: 
Are(t; st), are(t; st) and G~o~,(t; st) respectively. The cor- 
responding imaginary parts are indicated with the 
superscript 'ira'. We denote fofo by Fo, {2Refof;} 

r e  . r e  * i m  . im Gop(t, st) by F~, and {2Re fof;}Gop (t,s 0 by Fj, . We 
find then for the real and imaginary parts of equation 
(40), respectively: 

Are(t; st)=Fo{N- ~'Nop(t)}C(t)are(t; st) 
p ~ o  

+ ~ FrpeNop(t)C(t)are(t; st) 
p # o  

- -  E FtvmNop ( t ) C ( t ) a i m ( t ;  & )  ( 4 1 )  

p#o  

and 

Aim(t; st)=Fo{N- ~, No~(t)}C(t)aim(t; st) 
p#:o 

A C 2 6 A  - 4 *  
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+ ~. F~Nop(t)C(t)are(t; st) 
p#o 

+ ~ F~eNov(t)C(t)a"(t; st). (42) 
p#o 

The above equations hold when an arbitrary number 
of different types of stacking faults occur in the mater- 
ial. Each new combination of the vectors xv and Aup 
could characterize a new type of stacking fault. Let us 
assume now that for each glide plane direction xp only 
one type of stacking fault occurs. This assumption is 
not strictly necessary, but it simplifies the further cal- 
culations. The set of all stacking faults with glide plane 
directions x~ = Sx~, (where S is any point group sym- 
metry operation of the crystals) could be called the set 
of stacking faults that are equivalent by the symmetry 
of the structure. Let us assume also that there exists 
only one of such a set of stacking faults in the crystal- 
line material. This assumption simplifies further the 
calculations, but also is not strictly necessary. 

For a polycrystalline material that is distorted at 
random, we may assume (in view of the above restric- 
tions) 

Nor(yxv)= No~,(yx~, ) (43) 

i fp  ~ 0 and p '  ~ 0 and if y is any real parameter (Ix~l = 
Ix~,l = 1). This means that the number of unit cells of 
type p that are at a distance x~ from all unit cells of 
type o is equal to the number of unit cells of type p'  
that are at a distance x~, from all unit cells of type o 
in the material. 

Since we can neglect all N~ , (x )  with p, p '  ¢0 ,  the 
quantity No~,(x) is approximately constant for x C0. 
In view of equation (43) we can write 

N-1Nov(x) = N-1No~,(x) = x . (44) 

We can give an expression for x in terms of the quo- 
tient {Aim(t; st} {Are(t;st)} -1 by expanding it into a 
power series of t: 

{Aim(t; st)} {Are(t; s t ) } - l = a + b t + c t 2 + . . .  
( t > 0 ) .  (45) 

Since 
lim ~0(t; L) = ~(L) (46) 
tJ, o 

we have 
lira alto(t; s t ) = 0 .  (47) 
t J,0 

From equation (45) we get 

lim Aim(t; st)Are(t; st) -1 = a 
tt.0 

(48) 

The results (47), (48) and (44) are combined with equa- 
tions (41) and (42) 

tc=aFo{aFo k + ~, (Fivm-aFrve)} -1 . (49) 
p#o  

Here k is the number of types of stacking faults. By 
the relations (48) and (49) the stacking-fault density x 
is connected directly with the real and imaginary parts 

of the Fourier coefficients of the line profile of a Debye-- 
Scherrer line. The dependence of the imaginary 
coefficients on the choice of d (or st) is the main ob- 
jection against the use of the imaginary coefficients for 
the determination of stacking-fault densities. However, 
equations (48) and (49) are independent of that choice. 
These relations could be very useful therefore for the 
determination of the stacking-fault density. 

Once the stacking-fault density rc is known, we can 
determine C(t)are(t ;st) and C(t)aim(t ;st) from the Fou- 
rier coefficients of the line profile. To that end we sub- 
stitute x for N-1No~(t) in equations (41) and (42). From 
this substitution it follows that 

C(t)are(t; st) =[to ~ F~Aim(t; st) 
p#o 

+ Are(t; st) {Fo(1-ktc) + ~c ~ F~e)] 
p#o  

x[{Fo(l_kt¢)+1 ¢ ~, F~e}z+tc2(~ imz-1 F~ ) ] (50) 
p#o p~o 

and 

C(t)aim(t; st)=[Aim(t; st) {Fo(1-kx) 

+to ~'Frve}-A'e(t; st)to Z F~I 
p¢o p~o 

×[{Fo(1-k~)+~ ~ r~o}~+~( ~ r~)~]-~. (51) 
p#o p~o 

In conclusion, we arrive at the following procedure for 
the separation of the size effect, the distortion effect 
and the stacking-fault effect. This procedure can be 
applied for a polycrystalline material, that is distorted 
at random and in which one set of stacking faults oc- 
curs, that are equivalent by the symmetry of the struc- 
ture. This same approach is also justified when only 
one type of stacking fault occurs in the polycrystalline 
material. 

By means of equations (48) and (49) the stacking- 
fault effect is separated from both the size effect and 
the distortion effect. One obtains the stacking-fault 
density x. When x is known, the quantities C(t)are(t; st) 
and C(t)aim(t; st) are determined by means of equa- 
tions (50) and (51). Using the latter quantities the size 
effect and the distortion effect can be separated with 
the methods of Warren & Averbach (1952) or with that 
of La Fleur & Koopmans (1968). 

The equations can be extended to the case of more 
sets of equivalent types of stacking faults and to the 
case that more than one type of stacking fault occurs 
for one glide plane direction. These cases are probably 
exceptional in nature and the above procedure will be 
generally sufficient in the most common cases. 

Discussion 

We conclude from the foregoing that equation (25) 
gives a right description of the diffraction intensity 
distributions of small distorted crystals with stacking 
faults, within the limitations of the geometrical theory. 
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It is also restricted to the case that each type of stack- 
ing fault 'produces' only one new type of unit cell in 
the material. 

The intensity distribution of a powder diagram line 
is described by equation (26) with the same limitations 
as for equation (25). The quantities ~0(t; L) and C(t) 
in equation (26) can be replaced by rp"(t; L) and C"(t), 
chosen such that ~0"(t; L ) = 0  for L>_½d. This provides 
also a right description of the intensity distribution of 
a Debye-Scherrer line. The quantities ~0"(t; L) and 
C"(t) can be found from the line profiles; the corre- 
sponding unprimed quantities cannot be found from 
a powder diagram, unless a model of the distortions is 
assumed. 

The intensity distributions given in equations (25) 
and (26) are still unnormalized. When one wishes to 
determine the distribution of the distortions and the 
form function of the average coherently scattering re- 
gion it is necessary to know the normalization constant 
to within the factor N. To find that constant, equation 
(26) is integrated over So 

-- dso ~ , f , f ; ,  _ C(t)G2,2,,(t; sz)N~,~,(t) 
- -  oo  p p ,  

x exp (2rcisot) L) exp (2rcislL)dL 

= Z fpf*p' ( t )G~,( t )N~,( t )dt  
pp" 

= Noo(O)fof o + Nil(0) Z 2Refof; • (52) 
p¢o 

Here we used G~o:o,(0)= 1 and N:o~,(0)=0 if p, p '  50 .  
Equation (52) holds when all glide plane directions are 

equivalent by the symmetry of the structure, or, when 
No~(t) = 0 for p ¢ 0 and p ~ 1. We have for these cases: 

kNn(O)=N-Noo(O) . (53) 

Where k is the number of types of stacking faults. 
Thus the inverse of the normalization constant is: 

(s0)ds0 =fof oNoo(O) + N-N°°(O) ~ {2Refof~}. 
k p ~ o  

(54) 

Once the stacking-fault density re is known, one can 
calculate the normalization constant to within the fac- 
tor N by means of relations (53) and (54) and the 
relation 

x = N-1Nn(0).  (55) 

A final remark should be made. In equations (44), (49), 
(50) and (51) we disregarded the special case, that one 
of the glide plane directions is perpendicular to Sn. 
Then, for that type of stacking-fault, N-1No~(t) equals 
zero instead of K, and that value should be substituted 
into equations (41) and (42). Of course x can be sub- 
stituted for all other types of stacking faults. The equa- 
tions (49), (50) and (51) can be adapted immediately 
by omitting F ~  and F~ e for that type of stacking fault. 

We are indebted to Prof. A. G. M. Janner for his 
criticism and remarks. 
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A method is described for determining, with few measurements and calculations, the bounding planes 
of a crystal. 

The availability of computer programs for absorption rections can be calculated for polyhedral crystals to 
correction by either the Gaussian integration or ana- any desired accuracy. This suggests that it may be 
lytical methods (Ahmed, 1970) means that these cor- preferable not to grind crystals into spheres, a proce- 


